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ABSTRACT Multi-channel structured light with orbital angular momentum (OAM) can be applied in dif-
ferent applications. For example, OAM modulation and OAMmultiplexing in fiber optics communications,
high-dimensional quantum cryptography-based OAM states for transmitting secure information across free-
space, and independent data streams through OAM beams multiplexed free-space optical links. Using a
simple and efficient system consisting of a spiral phase element (SPE) and a multi-channel vortex filter
(MVF), we have converted input Gaussian beams into multi-channel OAM-based vortex beams for infrared
wavelengths. An SPE has been designed, which generates optical vortices with wavelength-dependent
topological charge (including fractional values). The resulting complex fields are optically relayed on a
binary MVF designed by modulo-2π phase addition of multiple fork gratings with topological charges 1,
2, and 3 and azimuthal orientations. In this way, the MVF generates beams with different OAM states
for different carrier waves with different angles and maps them at desired locations in the detector plane.
In this study, both 3× 3, as well as a hexagonal configuration, were used. Furthermore, the experimentally
obtained OAM spectrum qualitatively agrees with the results of numerical simulations, thus verifying
our approach. The presented approach opens a new pathway for developing an efficient multi-channel
OAM beams generator designed for a specific wavelength and illuminated by an input beam of different
wavelengths over a broad spectral range.

INDEX TERMS Laser tuning, optics, optical vortices, optical filters.

I. INTRODUCTION
Vortex beams have numerous applications and have been
widely reviewed [1]. Such beams with orbital angular
momentum (OAM) have potential in increasing communi-
cations capacity [2]–[5] and revolutionize the field of free-
space optical communication. However, many vortex beam
generators experience limitations, such as low efficiency,
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complex configurations, and narrow bandwidths, particu-
larly for transmission systems. The problems and substantial
results connected to OAM beams and their concrete applica-
tions are reviewed and reported [6]–[9]. Specifically, vortex
beams with infinite topological charge gain a new accu-
racy for multiplexing to enhance data capacity [2]–[4], and
such beams induce a force for particle trapping [10]. How-
ever, single-channel vortex beams from conventional devices
such as Q-plates, phase plates, and mode converters can-
not overcome constraints in increasing data storage capacity
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and competency of optical trapping [11]–[14]. In such sit-
uations, multi-channel vortex beams are more desirable to
achieve atomic physics, communications, and information
technology requirements. The OAM optical vortex beams
have unique spatial distribution, and their wavefront spirals
around the optical axis during propagation. The independent
structured beams with different OAM modes can be multi-
plexed, spatially propagated, and demultiplexed [15]–[17].
Usually, multi-channel OAM beams individually generated
and coaxiallymultiplexedwithmultiple beam combiners lead
to additional losses. A large number of optical elements, accu-
rate alignment conditions, and intricate fabrication of opti-
cal elements together make optical schemes more complex
and unsuitable for implementation in numerous applications.
Therefore, we exclusively concentrated on a cost-effective
and versatile optical method for generating multi-channel
OAM beams with minimal inherent losses. Note that in the
present work, the conversion of OAM beams based on spiral
phase plates strongly depends on the wavelength of an input
beam, whose OAM value changes with the wavelength. The
commercial and dynamic tools were discussed for OAM
mode formation and detection. All those studies were based
on active devices such as spatial light modulators, liquid
crystals, and digital mirror devices sensitive to laser threshold
damage and not suitable for high power applications. These
devices are relatively expensive and responding to specific
polarization states because their dimensions and combina-
tions can control the OAM beams into different configu-
rations and dimensions, making the approach more expen-
sive [18]–[20].

In this work, we presented a robust and flexible approach
for OAM mode generation, detection, and demultiplexing
with the combination of optical elements SPE and MVF that
are fabricated with well-established manufacturing technolo-
gies. Without using a spatial light modulator (SLM) [20] and
any other digital devices, optical vortex beams of different
wavelengths (visible and infra-red range) are generated with
the spiral phase element printed into the fused silica substrate
using a lithography process. Further, the second element,
MVF of two configurations, consist of OAM generators asso-
ciated with unique linear phases, which map different OAM
states to different transverse locations in the sensor plane in
hexagonal and 3× 3 square array configurations. The MVFs
are synthesized with the superposition of several rotated fork-
shaped gratings. The roles of these two structures (MVFs)
are exciting and vital in OAM mode mapping at desired
locations of different spatial geometries. The proposedMVFs
are fabricated using a well-controlled and straightforward
laser writing technique.

II. THEORETICAL ANALYSIS AND NUMERICAL
MODELLING
The action of SPE substantially depends on the wavelength
of laser radiation λ and is described by the function:

hSPE (ϕ, λ) =
ϕλ

2π (n (λ)− 1)
, (1)

where ϕ is the azimuth angle, n(λ) is the refractive index of
the material in which the optical element is manufactured (for
radiation with the wavelength λ). The relief height of a SPE
made for laser radiation with the wavelength λ0 is described
by the following formula:

hmax (λ0) =
λ0

n (λ0)− 1
, (2)

when the optical element (2) is illuminated with laser radia-
tion with an arbitrary wavelength λ, the field of the following
type is formed [21]:

τSPE (ϕ) ≈ exp
(
i
λ0

λ
ϕ

)
= exp (iµϕ) , (3)

where µ = λ0/λ corresponds to the generated vortex beam
order, which can have fractional values [22], [23]. Recently,
such beams have attracted the attention of researchers in con-
nection with their promising use in multiplexed transmission
of information [5], [24]–[26]. The value ofµ can bemeasured
using a multi-channel filter [27], [28] based on the correlation
method [29]. We use in this work the multi-channel diffrac-
tion filter formed by a superposition of spiral phases with
different topological charges and unique linear phases:

τF (x, y) =
∑P

p=1
exp

(
−impϕ

)
exp

[
i
(
αpx + βpy

)]
, (4)

where P is the number of MVF channels (or diffrac-
tive orders) matched with angular harmonics of various
orders mp and

(
αp, βp

)
are the corresponding spatial car-

rier frequencies. Figure 1 and 2 shows the synthesis of
the phase of MVF matched with optical vortices of orders
mp = [−3,−2,−1, 1, 2, 3] (hexagonal configuration) and
mp = [−3,−2,−1, 0, 1, 2, 3] (3× 3 square configurations),
respectively.

Let us consider a beamwith a wavelength λ incident on the
SPE designed for a topological chargem = 1 for awavelength
λ0, and the phase of SPE is given as 8SPP = mϕ. The ratio
between the design wavelength and incident wavelength is
given as µ = λ0/λ. The second element, MVF, consists of
OAM generators associated with unique linear phases, which
map different OAM states to different transverse locations in
the sensor plane.

The design wavelength is λ0 = 1.5 µm and the optical
configuration is simulated for λ = 0.5 µm, 0.6 µm, 0.75 µm,
1 µm, 1.5 µm, 2 µm and 3 µm. In accordance with Equa-
tion (3), it corresponds to the generation of vortex beams with
topological charges µ =3, 2.5, 2, 1.5, 1, 0.75 and 0.5. So,
the parameter µ need not be an integer but also fractional.

It must be noted that such fractional charges have been
investigated earlier, but the wavelength was constant, and the
SPE phase was varied less than or greater than 2π [30], [31].
In this case, the wavelength is changedwhen the phase of SPE
is maintained constant (0-2π) for a particular wavelength.

The resultant vortex beam with the topological charge µ
incidents on the MVF. The simulation results for the MVF of
the 3 × 3 configuration (Figure 2) are shown in Figure 3.
This MVF is matched with vortices mp = −3, −2, −1, 0, 1,
2, 3. Two diffraction orders have zero vortices to simplify the
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FIGURE 1. Synthesis of binary phase MVF using spiral and linear phases defined in Equation 4 in hexagonal configuration.

FIGURE 2. Synthesis of binary phase MVF using spiral and linear phases defined in Equation 4 in 3 × 3 configuration.

detection of fractional orders in the range (-1,1). The presence
of correlation peaks simultaneously in two diffraction orders
corresponds to the detection of an input vortex beam with
a fractional topological charge [21], [26]. When a vortex
beam is generated by the SPE coupled with vortices encoded
in the MVF, we get a set off-axis vortex beams with the
topological charges µp = µ + mp. Thus, vortex beams with
µp orders are generated simultaneously at different diffractive
orders p (Figure 3). A situation when µp =0 corresponds
to the generation of a non-vortex beam and a correlation
peak is appeared in the focal plane, so the OAM state of
the input beam can be detected. The MVF with hexagonal
configuration will act analogously.

III. EXPERIMENTAL OBSERVATIONS
An experimental arrangement for measuring the values of the
orbital angular momentum at different wavelengths by spatial

filtering is shown in Figure 4. The wavelength is adjusted
by tuning the NT-242 laser source to the appropriate wave-
length. The elliptical light beam from the NT-242 laser source
was expanded by the beam expander setup. The resulting
beam is limited to a converging circular beam with an initial
diameter of 8 mm relayed and guided through a 4f telescope
configuration. Therefore, for recording high-quality images
of the emerging orders, a sufficiently large distance is neces-
sary to focus the entire field distribution on the camera sensor.
As a result, long optical track length forms large focal spots
in the camera plane. Note that we employed a camera sensor
(InGaAsKB-Vita-Vs-320) that is sensitive for thewavelength
range of 900-1700 nm, and the selected sensor has a pixel
size of 30 µm. To record the images of intensity distribu-
tions for the wavelength range of 400-1000 nm, we used a
CMOS sensor (CMOSIS-CMV4000), and it has large screen
dimensions with a large screen of 11.3 mm ×11.3 mm with
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FIGURE 3. Simulation results of light diffraction from the MVF in 3 × 3 configuration.

FIGURE 4. Composition of MVF with fork-gratings of different phases, and a photograph of fabricated MVF shown as a circle inset
(top). Experimental arrangement for generating multi-channel vortex laser beams of different OAM orders (middle). The 3D
intensity distributions generated by MVF for different wavelengths are shown in insets (bottom). The values of µ are calculated,
and the integer value of OAM spectrum for wavelengths close to multiples of the base wavelength. The correlation peaks are
observed in diffraction orders for specific wavelengths, not in diffraction orders for other wavelengths. For particular wavelengths,
the correlation peaks are shifted from diffraction orders corresponds to fractional OAM values.

a pixel size of 5.5 µm. The sensor matrix records the image
of the focal spots and their spatial decomposition at the focal
distance.

We found that while changing the wavelength, the diver-
gence of the laser beam changes due to the dispersion of the

refractive index of quartz material in lenses used in the exper-
imental arrangement. Therefore, this effect purely depends
on the incident wavelength. Consequently, it is essential to
control the beam size at the outlet of the beam expander, and
it is achieved by inserting the spatial filter unit before the SPE.
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FIGURE 5. Multi-channel OAM beams in square arrays: experimental intensity distributions of multi-channel vortex beams with different
OAM states over a broad wavelength range.

The SPE was formed in a Fused Silica Substrate in a Single-
stage etching process using the grey-scale mask. Grey-scale
lithography enables the fabrication of the phase plate (stair-
cases etched around 360◦ turn of the diffractive surface)
using a single photolithography step followed by reactive ion
etching (RIE). 5-micron thick positive AZ4533 Photoresist

has been used. The height of the phase jump on the microre-
lief profile was 2200 nm.

Here, both the SPE and the specially designed and man-
ufactured multi-channel vortex filter (MVF), including the
zero-order, are installed in the converging beam. The distance
between the beam expander and the SPE is about 10 mm,
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FIGURE 6. Multi-channel OAM beams in hexagonal arrays: experimental intensity distributions of multi-channel vortex beams
with different OAM states formed by the MVF over a broad spectral range.

and the light energy from the SPE is directed through a
telescope and further incident on the MVF. A multi-channel
vortex filter (MVF) has the same optical properties for a
wide range of wavelengths. The circular laser recording
method was chosen to produce the MVF pattern on the
surface of 80 nm thick chromium coated quartz substrate is
pre-applied by the RF-magnetron sputtering process. Sub-
sequently, the chromium film was accurately exposed with
a sharply focused laser beam in accordance with a given
design topology. Under the action of high-intensity laser
heating, the filmwas oxidized. Next, it was developed using a
chemical developer based on a cerium sulfuric acid solution.
The sensor array placed in the focal plane allows recording
images of correlationmaxima at different values of the orbital
angular momentum in the corresponding diffraction orders.
The intensity distributions obtained in the plane of the camera
setup for different wavelengths are shown in Figure 5, 3× 3
configuration.

Figure 6 illustrates intensity distributions of fractional vor-
tex laser beams over a broad wavelength range. An analyzer
(MVF) was used to determine the order, and a correlation
peak indicates an initial beam with an order number cor-
responding to a given correlation peak. As seen in experi-
mental results, the spiral phase plate in the wavelength range
0.5µm-1.55µm forms a first-order vortex laser beam. In the
wavelength range of 0.4µm-0.5µm, the vortex laser beam
has two orders of magnitude. At a wavelength (λ) above
1.55µm, the vortex laser beam has a fractional orbital angular
momentum.

IV. CONCLUDING REMARKS
We have demonstrated robust demultiplexing of OAM beams
of different values into different geometrical configurations
over a broad wavelength range. We have experimentally
established this approach that offers cost-effective OAM
modes generation and mapping at desired locations and

143346 VOLUME 9, 2021



A. Naresh Kumar Reddy et al.: Robust Demultiplexing of Distinct OAM Infrared Vortex Beams

with desired geometry is achieved with the combination
of simple and effective optical elements (SPE, MVFs) that
can generate efficient outputs for input laser beams over a
broad wavelength range. We consider that our approach is
simple and easy to handle relatively in comparison to exist-
ing techniques. Our experimental results can lead to useful
applications such as optical manipulation, optical tweezers,
higher-order quantum entanglement, nonlinear optics, trans-
mitting information in free-space optical communications,
telecommunications, and fiber optics communications. The
experimental multi-channel OAM beams generator demon-
strated in the present work is similar to current practices
like wavelength-division multiplexing and demultiplexing.
Furthermore, adaptive optics can be used to correct wave-
front distortions and scattering losses caused by atmospheric
turbulence. However, optical vortex beams with OAM are
resilient to atmospheric turbulence effects, and the selected
infrared wavelengths precisely match the transmission win-
dow of space. Our approach paves a way to reduce the cost of
the commercial OAM modes-based communication systems
and projected a simple method for increasing the number
of channels in the communication system over free-space
or fiber link with minimal intermodal crosstalk. With the
latest advancements in fabrication technologies, we believe
that high-performance diffractive optical elements are also
possible [32]. OAM multiplexing and demultiplexing based
on metasurfaces are attractive research, but their maximum
efficiency can be determined at a specific wavelength and fre-
quency. For other input wavelengths, metasurfaces efficiency
is relatively low or trivial, and in such cases, the approach pre-
sented in the current paperwork is highly desirable.Moreover,
the precise alignment of such nanostructures to the centre
of an input laser is a tedious task. We plan to investigate
communication systems based on metasurfaces in our future
works.
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